Quote:
Take a look at the following list of numbers: 4,8,5,3,9,7,6. Read them out loud to yourself. Now look away, and spend twenty seconds memorizing that sequence before saying them out loud again.
If you speak English, you have about a 50 percent chance of remembering that sequence perfectly If you're Chinese, though, you're almost certain to get it right every time. Why is that? Because as human beings we store digits in a memory loop that runs for about two seconds. We most easily memorize whatever we can say or read within that two second span. And Chinese speakers get that list of numbers—4,8,5,3,9,7,6—right every time because, unlike English, their language allows them to fit all those seven numbers into two seconds.
That example comes from Stanislas Dehaene's book The Number Sense, and as Dehaene explains:
"Chinese number words are remarkably brief. Most of them can be uttered in less than one-quarter of a second (for instance, 4 is 'si' and 7 'qi') Their English equivalents—'four,' 'seven'—are longer: pronouncing them takes about one-third of a second. The memory gap between English and Chinese apparently is entirely due to this difference in length. In languages as diverse as Welsh, Arabic, Chinese, English and Hebrew, there is a reproducible correlation between the time required to pronounce numbers in a given language and the memory span of its speakers. In this domain, the prize for efficacy goes to the Cantonese dialect of Chinese, whose brevity grants residents of Hong Kong a rocketing memory span of about 10 digits."
It turns out that there is also a big difference in how number-naming systems in Western and Asian languages are constructed. In English, we say fourteen, sixteen, seventeen, eighteen and nineteen, so one would think that we would also say one-teen, two-teen, and three-teen. But we don't. We make up a different form: eleven, twelve, thirteen, and fifteen. Similarly, we have forty, and sixty, which sound like the words they are related to (four and six). But we also say fifty and thirty and twenty, which sort of sound like five and three and two, but not really. And, for that matter, for numbers above twenty, we put the "decade" first and the unit number second: twenty-one, twenty-two. For the teens, though, we do it the other way around. We put the decade second and the unit number first: fourteen, seventeen, eighteen. The number system in English is highly irregular. Not so in China, Japan and Korea. They have a logical counting system. Eleven is ten one. Twelve is ten two. Twenty-four is two ten four, and so on.
That difference means that Asian children learn to count much faster. Four year old Chinese children can count, on average, up to forty. American children, at that age, can only count to fifteen, and don't reach forty until they're five. By the age of five, in other words, American children are already a year behind their Asian counterparts in the most fundamental of math skills.
The regularity of their number systems also means that Asian children can perform basic functions—like addition—far more easily. Ask an English seven-year-old to add thirty-seven plus twenty two, in her head, and she has to convert the words to numbers (37 + 22). Only then can she do the math: 2 plus 7 is nine and 30 and 20 is 50, which makes 59. Ask an Asian child to add three-tens-seven and two tens-two, and then the necessary equation is right there, embedded in the sentence. No number translation is necessary: It's five-tens nine.
"The Asian system is transparent," says Karen Fuson, a Northwestern University psychologist, who has done much of the research on Asian-Western differences. "I think that it makes the whole attitude toward math different. Instead of being a rote learning thing, there's a pattern I can figure out. There is an expectation that I can do this. There is an expectation that it's sensible. For fractions, we say three fifths. The Chinese is literally, 'out of five parts, take three.' That's telling you conceptually what a fraction is. It's differentiating the denominator and the numerator."
The much-storied disenchantment with mathematics among Western children starts in the third and fourth grade, and Fuson argues that perhaps a part of that disenchantment is due to the fact that math doesn't seem to make sense; its linguistic structure is clumsy; its basic rules seem arbitrary and complicated.
Asian children, by contrast, don't face nearly that same sense of bafflement. They can hold more numbers in their head, and do calculations faster, and the way fractions are expressed in their language corresponds exactly to the way a fraction actually is—and maybe that makes them a little more likely to enjoy math, and maybe because they enjoy math a little more they try a little harder and take more math classes and are more willing to do their homework, and on and on, in a kind of virtuous circle.
When it comes to math, in other words, Asians have built-in advantage. For years, students from China, South Korea, and Japan – and the children of recent immigrants who are from those countries – have substantially outperformed their Western counterparts at mathematics, and the typical assumption is that it has something to do with a kind of innate Asian proclivity for math.* The psychologist Richard Lynn has even gone so far as to propose an elaborate evolutionary theory involving the Himalayas, really cold weather, premodern hunting practices, and specialized vowel sounds to explain why Asians have higher IQs.** That’s how we think about math. We assume that being good at things like calculus and algebra is a simple function of how smart someone is. But the differences between the number systems in the East and the West suggest something very different – that being good at math may also be rooted in a group’s culture.
...
Here we have a legacy that turns out to be perfectly suited for 21st-century tasks, and it’s hard not to wonder how many other cultural legacies have an impact on our 21st-century intellectual tasks.
* On international comparison tests, students from Japan, South Korea, Hong Kong, Singapore, and Taiwan all score roughly the same in math, around the ninety-eighth percentile. The United States, France, England, Germany, and the other Western industrialized nations cluster at somewhere between the twenty-six and thirty-sixth percentile. That's a big difference.
** Lynn's claim that Asians have higher IQs has been refuted, convincingly, by a number of other experts, who showed that he based his argument on IQ samples drawn disproportionately from urban, upper-income homes. James Flynn, perhaps the world's leading expert on IQ, has subsequently made a fascinating counterclaim. Asians' IQ, he says, have historically been slightly lower than whites' IQs, meaning that their dominance in math has been in spite of their IQ, and not because of it. Flynn's argument was outlined in his book Asian Americans: Achievement Beyond IQ (1991).