Heard about this yesterday: The paradox begins with the observation that certain expressions in English unambiguously define real numbers, while other expressions in English do not. For example, "The real number whose integer part is 17 and whose nth decimal place is 0 if n is even and 1 if n is odd" defines the real number 17.1010101..., while the phrase "London is in England" does not define a real number. Thus there is an infinite list of English phrases (where each phrase is of finite length, but lengths vary in the list) that unambiguously define real numbers; arrange this list by length and then dictionary order, so that the ordering is canonical. This yields an infinite list of the corresponding real numbers: r1, r2, ... . Now define a new real number r as follows. The integer part of r is 0, the nth decimal place of r is 1 if the nth decimal place of rn is not 1, and the nth decimal place of r is 2 if the nth decimal place of rn is 1 (i.e. Cantor's method). The preceding two paragraphs are an expression in English which unambiguously defines a real number r. Thus r must be one of the numbers rn. However, r was constructed so that it cannot equal any of the rn. This is the paradoxical contradiction.